
TI T2 

AH~208 ) @ .[ c~dT~; i~ = AH2(298) @ y c~dT2; AH~298), AH2 (29e) are the standard enthalpies of water and 
298 298 

the substance; Cw, c2 are the specific heat capacities of water and the substance of the par~ 

t i c l e s ,  r e s p e c t i v e l y .  

If we n e g l e c t  t he  q u a n t i t y  Dau~/Dt, then ,  t he  e q u a t i o n  of  the  i n f l u x  of  hea t  to  the  
phase interface leads to a finite algebraic equation for T 

4 = a V  [fh ( r ,  - To) -4- f4 (T2 - -  r , , ) l  - o ~ n  (4  - - / 1 )  = o. 
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FLOW OF GENERALIZED NEWTONIAN AND BINGHAM LIQUIDS IN 

AN ANNULAR CAPILLARY 

I.B. Muratov L~C 532.135;532~546 

The laws of motion of Newtonian [i. 2], viscoplastic [3-5], and non-Newtonian [6] liq- 
uids in an annular capillary (in the gap between two coaxial cylindrical tubes) have already 
been obtained. In the present paper we solve the problem of established horizontal flow of 
generalized Newtonian and Bingham liquids [7-9] in an annular capillary. 

Let R: and R2 be the internal and external radii, respectively, of the tubes forming the 
annular capillary, and r the radial cylindrical coordinate of a liquid particle in the flow 
cross section. 

The flow of a generalized Newtonian liquid in a capillary under the action of a hydra,,lic 
pressure gradient I proceeds within the expanding ring r, ~ r S r= in such a way that the 
veloc2ty v(r) at some intermediate r = ro is a maximum and. decreasing nonsymmetrically in 
the direction of the walls, is a minimum at r = rl and r = r2. We can accordingly distinguish 
two flow zones with different velocity laws vj(r) in the flow cross section. In the first 
zone (j = i. rl ~ r ~ ro) the velocity gradient dv,(r)/dr ~ 0 and in the second zone (j = 2, 
ro S r S r2) dv2/dr ~ 0o 

Considering the balance of the forces applied to an elementary annular layer of liquid 
in each zone we have 

&cj(r)/dr + ~i(r)/r :: (--t)JpgI, <l) 
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where 

mj(r) = --  ( - -  l)J~dvj(r )/dr. + qNj(r) (2) 

is the tangential shear stress with its limiting value Te = nNj(r) in the given layer [7]; 
p and ~ are the density and viscosity of the liquid; g is the gravitational acceleration, 

Integrating (i) and taking into account (2) with boundary conditions 

dv i (~) f 
a) v s ( r s ) = O ,  b) [ dr r=rj ~-- O, C) V 1 ( rO)  = Z) 2 ( t o )  , 

dv i (r) dv~ (r) 
d)  dr r = r ,  - -  "~r r = r i  = O,  

we find an expression for the velocity of the liquid particles in each zone: 

r ] 
vj(r)-- pg/4~ ( rz-r~-2r~l"~r)-(- ' ) '  [roNoln rr, SU'(r)dr (No:N,(ro)). (3) 

For determination of rj and re with a known law of variation N4(r) we can use condi- 
tions b and c, In addition~ condition b enables us to obtain a relation connecting the in- 
ternal flow picture with the external forces: 

I = (--  t) s (2~lpg)[rsN ~ (r j) - -  roNoil(r ~ -- r~). (4) 

Hence, for rj § r~ and rj § Rj we can establish upper and lower limits of the effective 

gradients I, and IR at which there is no motion of the liquid in the capillary and no further 
expansion of the section, respectively. A further increase in I (I > IR), causing a flow 
through almost the entire volume of the capillary, is limited by the critical value of the 
pressure gradient I,, above which laminar flow is converted to turbulent flow. 

The liquid flow rate Q in the annular capillary is 

2 r1 

Q = 2~ Z(-I)J ~ rvj (r) dr. 
i = t  r, 

Substituting in this the expressio n vj (r) from (3) and integrating, we obtain 

kI [ ~. 2 r1 
O = ~ [ r 2 - r ~ - @ ~ ( r ~ - r ~ - r ~ l n ~ ) q - 2 , ~ ,  ) i rdr  i N j ( x ) d x  q- 

s=i ~s 
+ ~ roN o r 2 -{- r 2 --  r~ In , k = ~pgR~/(Sn). 

(5) 

We consider some representative cases of Nj(r~ 

( r - -ro  )n ( r ~ - - r 2  ~ m 
' 2 2 N i ( r ) = / l i r f  ~ n > t ;  N j ( r ) = a j r  t R s - - r  o] 

m > 0 (No = O, N~ (RA = Mj), 
(6) 

where n, m, and M4, =j are, respectively, parameters characterizing the non-Newtonian behavi- 
or of the liquid in the volume and at the contact boundary. 

Substituting the expression Nj (~) from (6) in (4) and calculating the corresponding lim- 
its, we find 

I o = O, In  ---- (-- :l)I(2"qRjMj/pg)/(R~ - -r2) .  (7) 

Here we have the relations 
N l ( r l ) = N 2 ( r 2 ) ,  r 2 = s r  2 for I 0 ~ I ~ I 2 ,  

r2o = OR1R~ for I 2 ~ I <  I . ,  (8) 
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where 

s = t l / r ~ ;  0 = ( c +  ~ ) / ( t + c ~ ) ;  c =  B~/B~; ~ = M 1 / M v  

Now, introducing (6)-(8) into (5) and performing the integration under the summation 
sign we obtain expressions for the flow Q of a generalized Newtonian liquid in an annular 
capillary 

where 

Q -- k I  

- -  --.+'-"-g l + ~  + . + l  l ~  + 

-)] +--s  , O<I~IR ,  

I - -  c a - -  4 0 c  ( i  - -  c ~ + 0 c  I n  c) - -  .77734I~/I [c ~ (0 - -  c) ( V ~ - -  ]/'--0)~ (1 ~ -  

( I_:_-V~ c \2( O- -c  ~2(n--l)/n . J - -  1"0-~ ' .[ t-~'Vs'~ j/(tz-!) 
s : :  < l - - )  , ) "o = ! , = + ! " 

(9) 

[ (ro./R~.) 4 (i -- s:) (1 -- s)2m/(m + 2), 0 ~< I ~  r ,  
2IR/[ 

Q = k I . t l - - c 4 - - 4 O c ( l - - c 2 + O c l n c )  m ~ :  2 [ ( 1 - 0 c ) 3 - ( 0 - c ) 3 1 ,  I R < ~ I < I , ,  (I0) 
! 
( 

where 

s -- c \~_--2"~] ; r~ = P,., (IllR)'/cam> -- " - ' ~ 

The obtained laws are interesting in that they allow us to take into account the singu- 
larity of the interphase effects 0 at the boundary of contact of the liquid with the solid 
wall (or with any. other flow component) and a~e more general for flow~ in capillaries of 
round and annular section, 

For instance, from C9), (I0) we can derlve as particular cases formulas for the flow 
of; a generalized Newtonlan liquid in a round capillary [8] when s ~ 0 Cc + 0); a Newtonian 
liquid in an a~nular capilla~ [i] when n and m § ~[0 § (c 2 -- i)/(2c in c)]; water in the an- 
nular space at the wall of a round tube when its central cylindrical region is occupied by 
air [I0] when n and m § ~ and O + C, 

We note that if a relation between the parameters of the Interphase characters can be 
established in the form 8 ~ const CO S ~ s ~), the flow of liquid in formulas (9) and (I0) 
will he expressed only as a function of the pressure gradient I and the internal theological 
eharacterlstic of the liquid n, m; and, on the other hand, on the hasis of (9)~ (I0) from 
experimentally dete~mlned flow laws we can conduct a search for the values of n, m, and O, 

A flow af generalized Bingham liquids under the action of external forces I ~ 0 exceed~ 
!ng the forces Of cohesion of the liquid particles with the solid wall begins i~mediately 
throughout the volume of the capillary and, when I~ Io, is due to the gradual lamination of 
the moving mass within the expanding regions Rx s r ~ r~ and r2 & r E R2, In this ease the 
intermediate region r, S r S r2 of liquid moves as a single whole, i,e,, like a solid body. 
and when I attains the value I, the liquid in the annular gap is completely laminated, and 
when 2 a I, the flaw becomes viscous [9], 

In this case the velocity v~ (r) of a liquid particle in each zone is given by the formu~ 
la 

2 2 /--~7 ) _[rjN~ ( r j ) In  vj (r) -- vgI4n (r" - -  Be --  2rj In r , - -  (__ l) i z 
Mj 

--;R, N , ( r ) d r ]  (]=i;2), I o < I < I , ,  (ll) 
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which, like (3), is obtained by integration of (i) with boundary conditions 

a) vj (RI) -- 0, b) dVJdr(r) ]r_rj = 0, c) V 1 (r,) = u~. (r2). 

We n o t e  Chat  when N s ( r )  = x o / n  = c o n s t ,  we a r r i v e ,  f r o m  e l l ) ,  at: t h e  c o r r e s p o n d i n g  e q u a v  
t i o n s  p r e v i o u s l y  ob ta ine~ t  f o r  a f l o w  o f  v i s c o p l a s t i c  l i q u i d  i n  an  a r t a u l a r  s p a c e  [ 5 ] .  

For this flow model, taking Nj (r) in t:he form of t:he first: representation in (6), we 
have Mj = M, r~ = (R=r. -- R,r=)/(R~-- r~ + rx -- K~) and 

N s ( r ~ ) = M  ~ , - -  ~ n ~ l .  

Now, writin~ the equilibrium condition 

- q) = 2= + V' 
tR,--R,J 

in accordance with the established flow regime for the initial and effective pressure gradi- 
ents, we obtain 

2~lM r [ r~--r,  ~n--i Io pg(R~ B~) I = 
= _ , : o ~ R ~ _ l h  J �9 

For determination of r~ (and then r,) the usual procedure [5] is to consider the latter 

relation along with the boundary condition c). 

In accordance with the above arguments, the flow Q of a generalized Bingham liquid in 
an annular capillary Is glven in the form 

q = 2= ~,  ( - -  l)J I rvj (r) dr + ~z (r'~ - -  r~) v~ (r,) = 
J=l rj 

~pgI [(-- 1 / ( B ~  --  r~) 2 + 2rj ( r2--  rl) (R~ --  r~)] + 

-~ NT{) GV2-7~)4 (_r, -- r , )  (R2-- ro) 3 [fn (rl,  r, ,  I)  -- F= (B~, B2, Io) (IolI)nl(n-" i)l}, 

I o ~ I <  I , ,  (12) 

where 

2 2 ( I ,~II(.--o �9 r 2 - -  ~ r i  
F~ (r~, r 2, 1) = (n -~- 2) (n + 3) (R-~--r '~ k7~-o / - -  

[ z V/(n-, 
- - 2 ( n - ] - 3 ) ~ ( ~ o  ) 2 / ' ~ - ~  + i~)lT~o ] , 

and we obtain F_,(R,, R2~ I,) from this by replacing r~, r2i and I, respectively, by R,, R2~ 
and Io; I = (~-- r,)/(R2-- re), 

After simple algebra we obtain from (12), wlth n = 0, the formula for a flow of visco~ 
plastic fluid in the annular space between two coaxial cylindrical tubes [5] 

Q _- .~Pgi24~1 ,(~"q [( R2 __/.2)2 _ (R~ - r~) 2] -~- 

--: 2 (r: - -  r~)[3 (r~ R~ + r2R~ ) - -  2 (R'~ -- B~) - -  r~ --  r~]}. 

When r, + 0 (K, ~ 0) we obtain from (12) the formula for the flow of generalized Bingham 
liquid in a round capillary [8]. 

The above flow models for complex liquids with a choice of defined functions Nj(r) can 
be used for the description andexplanatlon of anomalous f%ltration processes $n Snhomogeneous 
porous materials, 
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CONCENTRIC IMPACT OF POINTED BODIES 

I. E. Zababakhin UDC 539.893:62-98 

In [2] the concentric press described in [i] was analyzed for the limiting case of a 
sphere composed of a set of narrow pyramids which occupy the sphere not continuously but with 
a certain porosity K > i (K is the ratio of the volume of the sphere to the total volume of 
the pyramids). Whereas [2] was concerned with the static action of the press, the present 
article deals with the dynamic process of compression in which the pyramids approach each 
other at a certain speed. This question arose as a natural extension of the work described 
in [2]. As before, the entire effect is self-similar, the compression of the material at 
the center of the device is infinitely great and lasts a finite time (until externally re- 
lieved). For the parts in the center not to be destroyed, it is sufficient to assume slight 
linear hardening of~he press material under pressure; experiments [3] show that under pres- 
sure the strength increases considerably. 

Diagrams showing the device at the initial moment and at a later stage are presented 
in Fig. la, b. The pyramids approach the center at the rate uo. In the center there is 
formed a spherical zone of continuous compression whose boundary moves outwards at the rate 
v; behind it a shock wave spreads out from the center at velocity w. We note that the poros- 
ity K = (8/~) a, where ~ is the angle at the vertex of the uncompressed pyramid, and 8 is the 
angle at the vertex of the compressed pyramid. 

Figure 2 shows the path of a lateral particle of the ~yramid up to the closing of the 
gap. Clearly, --ue~ = v(8 -- ~) (uo < 0), whence uo/v = --(~K -- i), which for low porosity 
(K-- i = e << i) gives uo/v =--e/2. 

A qualitative picture of the motion is given in Fig. 3. Until the pyramids close up, 
the material moves at a constant rate (from q to rG); this is followed by a smooth decelera- 
tion along the path from r| to r~. At the shock wave the velocity decreases abruptly but re- 
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